A data-driven approach to optimizing spectral speech enhancement methods for various error criteria
نویسندگان
چکیده
Gain functions for spectral noise suppression have been derived in literature for some error criteria and statistical models. These gain functions are only optimal when the statistical model is correct and the speech and noise spectral variances are known. Unfortunately, the speech distributions are unknown and can at best be determined conditionally on the estimated spectral variance. We show that the ‘‘decision-directed’’ approach for speech spectral variance estimation can have an important bias at low SNRs, which generally leads to too much speech suppression. To correct for such estimation inaccuracies and adapt to the unknown speech statistics, we propose a general optimization procedure, with two gain functions applied in parallel. A conventional algorithm is run in the background and is used for a priori SNR estimation only. For the final reconstruction a different gain function is used, optimized for a wide range of signal-tonoise ratios. The gain function providing for the reconstruction is trained on a speech database, by minimizing a relevant error criterion. The procedure is illustrated for several error criteria. The method compares favorably to current state-of-the-art methods, and needs less smoothing in the decision-directed spectral variance estimator. 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Speech Enhancement Algorithms: a Brief Review
In this paper, the aim of speech enhancement algorithms is to improve the quality or intelligibility of the noisy speech signals by using different enhancement algorithms. Many speech enhancement algorithms are designed to suppress additive background noise. This review paper presented the basic of spectral subtraction algorithm, minimum mean square error, wiener algorithm and TSDD algorithm, a...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملA New Method for Speech Enhancement Based on Incoherent Model Learning in Wavelet Transform Domain
Quality of speech signal significantly reduces in the presence of environmental noise signals and leads to the imperfect performance of hearing aid devices, automatic speech recognition systems, and mobile phones. In this paper, the single channel speech enhancement of the corrupted signals by the additive noise signals is considered. A dictionary-based algorithm is proposed to train the speech...
متن کاملA generalized estimation approach for linear and nonlinear microphone array post-filters
This paper presents a robust and general method for estimating the transfer functions of microphone array post-filters, derived under various speech enhancement criteria. For the case of the mean square error (MSE) criterion, the proposed method is an improvement of the existing McCowan post-filter, which under the assumption of a known noise field coherence function uses the autoand cross-spec...
متن کاملمدل میکروسکوپی دوگوشی مبتنی بر فیلتر بانک مدولاسیون برای پیش گویی قابلیت فهم گفتار در افراد دارای شنوایی عادی
In this study, a binaural microscopic model for the prediction of speech intelligibility based on the modulation filter bank is introduced. So far, the spectral criteria such as the STI and SII or other analytical methods have been used in the binaural models to determine the binaural intelligibility. In the proposed model, unlike all models of binaural intelligibility prediction, an automatic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Speech Communication
دوره 49 شماره
صفحات -
تاریخ انتشار 2007